ORIGINAL PAPER

A DFT study on surface dependence of β -Ga₂O₃ for CO₂ hydrogenation to CH₃OH

Jin Qu · Shik Chi Edman Tsang · Xue-Qing Gong

Received: 28 September 2014 / Accepted: 24 November 2014 / Published online: 6 December 2014 © Springer-Verlag Berlin Heidelberg 2014

Abstract In this paper, the catalytic activities of various β -Ga₂O₃ surfaces for CO₂ hydrogenation have been studied by density functional theory (DFT) calculations. The surface dependence of adsorptions and coadsorptions of reactants are investigated on two terminations of Ga₂O₃, which are $Ga_2O_3(001)$ and $Ga_2O_3(111)$. The active termination of Ga₂O₃(001) is identified and a surface structure rearrangement is determined. The thermodynamic profiles of surface intermediates involved in the reaction pathways for methanol formation are systematically calculated, and the initial key step of CO₂ hydrogenation to bicarbonate is analyzed in detail. It has been found that the active Ga₂O₃(001) termination gives rise to a lower hydrogenation barrier largely due to the fact that saturated lattice O at Ga₂O₃(001) can act as a favorable site for both hydrogen adsorption and transfer while the unsaturated O at $Ga_2O_3(111)$ is much less effective for these processes.

Keywords CO_2 activation \cdot Density functional theory $\cdot \beta$ -Gallium oxide \cdot Methanol formation

Electronic supplementary material The online version of this article (doi:10.1007/s00894-014-2543-7) contains supplementary material, which is available to authorized users.

J. Qu \cdot X.-Q. Gong (\boxtimes)

Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China e-mail: xgong@ecust.edu.cn

J. Qu · S. C. E. Tsang

Introduction

Gallium oxide (Ga₂O₃) is an important wide band gap (4.2-4.9 eV) semiconductor [1–3]. Among its different polymorphs, only the monoclinic β phase is stable at high temperatures up to its melting point, and it has drawn a lot of attention for its potential application as optoelectronic devices [4, 5], gas sensors [6, 7], spintronic devices [8, 9], etc. Besides experimental studies, many theoretical simulations using first principles calculations have been carried out to explore its structural [10, 11], electronic [12], and optical [13] properties.

In recent decades, Ga₂O₃ has also been particularly noted for its catalytic activity in CO_2 hydrogenation [14]. It is even expected to be able to compete with the classical industrial Cu/ ZnO catalysts [15]. Several reaction pathways have been proposed to explain its catalytic mechanism [16–19]. Infrared (IR) spectroscopy studies of Ga2O3 based catalysts have identified different surface reaction intermediate species such as formate, carbonate, and bicarbonate in various adsorption states [20]. Moreover, when Ga₂O₃ supported Pd nanoparticles were used, active hydrogen species spilled over from supported metal were found to accelerate the reaction [20, 21], and the formation of surface Pd-Ga alloy at high temperatures was also proposed to explain the high activity [22]. The occurrence of carbonate and bicarbonate species was believed to be the indication of CO_2 activation [23]. Accordingly, the addition of other oxides which could enhance the adsorption of CO₂ and the formation of these intermediates over Ga₂O₃ was studied [24]. The hydrogenation of formate to methylenebisoxy was also identified as a possible rate determining step when the amount of active H was sufficient [25]. It has also been proposed that surface oxygen vacancies which could enhance CO₂ adsorption and H₂ dissociation might play a crucial role in this reaction as well [26–29].

Adsorbate behaviors on Ga_2O_3 such as CO_2 [27], CH_4 [30], H_2 [28, 29, 31], formate [32], CH_3OH [33] etc. have been

Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK

investigated by using different theoretical methods. Most of these simulations were based on the lowest-energy (100) termination surface of β -Ga₂O₃ [11]. With combined experimental and computational methods, H2O, alcohols, and carboxylic acids on different terminations of Ga₂O₃(100) have also been studied [34]. It has been found that the adsorption strength is very sensitive to the surface termination and the less stable surface is more reactive. More recently, thin films with different Ga₂O₃ surface orientations such as (100), $(\overline{2} \ 01)$ and (001) were successfully prepared [35, 36], and various shapes of Ga₂O₃ nanostructures have also been constructed [37-45]. A plate like Ga₂O₃ material with dominating {001} facets has been reported to be much more active and exhibit stronger metal-support interaction compared to the {111} dominated nanorod [46]. It is therefore crucial to understand the promoting effect of Ga₂O₃(001) facet as it might lead us to some new understanding of this material in catalysis.

In this work, we performed systematic density functional theory (DFT) calculations of the adsorption of reactants and intermediates involved in the hydrogenation of CO₂ at β -Ga₂O₃(001). We also attempted to compare the key steps of CO₂ activation on different β -Ga₂O₃(001) and (111) surfaces, which may shed light on the origin of the catalytic properties of low index β -Ga₂O₃ surfaces and their roles in the plate and nanorod like materials.

Computational details

All calculations were conducted in the framework of DFT by using the Vienna ab initio simulation package (VASP) [47–50]. The projector-augmented wave (PAW) potentials [51, 52] were used for the core electron interaction. The Perdew–Burke–Ernzerhof (PBE) functional [53, 54] based on the generalized gradient approximation (GGA) was employed to evaluate the non-local exchange-correlation energy. For all structural optimizations, a plane wave basis set with a cutoff energy of 400 eV was used and the ionic positions were allowed to relax until the forces were less than 0.02 eV/Å. Spin polarization was also included in all calculations, and Bader charge analyses [55–58] were applied to study the charge distribution. The nudged elastic band (NEB) method was used to determine the transition states (TS) along the reaction pathways [59–64].

In this work, the unit cell model for the bulk monoclinic β -Ga₂O₃ contained four Ga₂O₃ units (see Fig. 1). A 2×8×4 k-point grid determined by the Monkhorst-Pack method was used in the bulk cell optimization, which gave rise to cell parameters of a=12.255 Å, b=3.052 Å, c=5.828 Å, in good agreement with the experimental values (a=12.230 Å, b= 3.040 Å, c=5.800 Å). There are two inequivalent Ga sites (tetrahedral Ga(I) and octahedral Ga(II)) and three inequivalent O sites (out of plane of Ga triangle O(I), in the

Fig. 1 Bulk unit cell of monoclinic β -Ga₂O₃. The pink balls denote Ga atoms and the red balls are O. Different Ga and O atoms are labeled

plane of Ga triangle O(II) and tetrahedral O(III)) in each unit cell as shown in Fig. 1.

Two different Ga₂O₃(001) terminations were built as described in ref. [11], namely (001)-A and (001)-B. The 2×2 surface supercell (12.630×6.104 Å²) was used in this study for both (001) slabs. To study the Ga₂O₃(111) surface, we built a stoichiometric unreconstructed Ga₂O₃(111) slab containing three eight-member rings and one four-member ring on the termination in each surface cell. A 2×1 supercell (12.630× 6.578 Å²) was used to make the surface size similar to that of Ga₂O₃(001). The bulk-truncated models of these three surfaces could be found in Supporting information (SI) (see Fig. S1) and distinct surface Ga and O sites are labeled. The changes of the corresponding bulk atoms are summarized in Table 1.

Both $Ga_2O_3(001)$ and (111) surfaces were modeled by periodic slab models with 24 Ga_2O_3 molecular units being distributed in six Ga layers. The bottom two layers were frozen at their bulk positions while the top four layers were allowed to relax in all calculations. The *k*-point sampling used a 2×4×1 grid, and a vacuum layer of 12 Å along the z direction perpendicular to the surface was employed to prevent spurious interactions between the repeated slabs in all these models.

To estimate the adsorption energies, the following equation was considered:

O number	(001)-A	(001)-B	(111)	Ga number	(001)-A	(001)-B	(111)
1	3 – 2	4-2	3 – 2	1	4 – 3	6 – 4	4-3
2	3 – 3	3 – 3	3 – 2	2	6 - 6	4 - 4	6 - 5
3	4 - 4	3 – 3	4-3	3			6 - 5
4			4 - 4	4			4 - 4
5			3 – 3				
6			3 – 3				

Fig. 2 Top and side views of surface structures of bulk-truncated Ga₂O₃ (a) (001)-A, (b) (001)-B, and (c) (111) after optimization

$$E_{ads} = -(E_{slab+mol} - (E_{slab} + E_{mol})),$$

in which E $_{slab}$ and E $_{mol}$ are the total energies of Ga₂O₃ surface slab and a single adsorbate molecule in gas phase; E $_{slab+mol}$ denotes the total energy of slab with adsorbed molecule.

Results and discussion

Bare (001)-A, (001)-B, and (111) surfaces of Ga₂O₃

The optimized structures of bare $Ga_2O_3(001)$ surface with two different bulk-truncated terminations, namely $Ga_2O_3(001)$ -A and (001)-B, are presented in Fig. 2. For $Ga_2O_3(001)$ -A (Fig. 2(a)), the most distorted part after optimization is around the Ga1 site. The O2 atom shifts up by 0.635 Å while the Ga1 atom bends down by 0.075 Å, contracting and averaging the three Ga-O bond lengths (1.812 Å, 1.812 Å, 1.801 Å) of Ga1 from 1.839 Å, 1.839 Å, and 1.860 Å, respectively, and creating a planer triangle like coordination environment. This is mainly due to the fact that Ga1 is type I tetrahedral Ga in the bulk which bears coordination decrease on the surface while Ga2 keeps all its surrounding octahedral oxygen.

It needs to be noted that this $Ga_2O_3(001)$ -A surface can undergo a further asymmetric distortion (see Fig. 3) when the CO_2 molecule adsorbs on it (Fig. 4(a)). We then optimized the adsorption-induced reconstructed surface and found that the rearrangements of surface atoms can further reduce the total energy of the clean surface slab by around 2 eV. As presented in Fig. 3, the Ga2' atom shifts by 1.096 Å along the [010] direction, which elongates the bond between Ga2' and O3' from 2.099 to 3.013 Å. The corresponding Ga2-O3 bond beside the adsorbate area is decreased to 2.001 Å, which also reduces the Ga1-O1 distance to 1.912 Å to form a tetrahedral like coordination for Ga1. Moreover, the O3 and O3' atoms further drop below the surface, which may make them more difficult to be reached by other reactants. It needs to be mentioned that such reconstruction could also be identified when other reaction intermediates such as HCOO, COOH, and HCO (see below) adsorb at $Ga_2O_3(001)$ -A. Thus we used the optimized rearranged surface as reference when we calculated adsorption energies on this surface.

The Ga₂O₃(001)-B (Fig. 2(b)) termination exhibits slight fluctuation after optimization, especially at its Ga1 site. The Ga1 atom here is a type II octahedral Ga in the bulk and it has two lattice oxygen removed on the surface. It embeds into the surface by 0.214 Å and the angles of O1-Ga1-O3, O2-Ga1-O3, and O3-Ga1-O3 change from 91.0°, 95.5°, and 100.4° in the bulk to 104.8°, 97.8°, and 109.4°, respectively, indicating a trend for the Ga1 to evolve to tetrahedral coordination for stabilization.

Fig. 3 Top and side views of calculated rearranged surface structure of Ga_2O_3 (001)-A

Table 2 Calculated Bader charges (in |e|) of surface and bulk Ga

Ga number	(001)-A		(001)-B		(111)	
	surface	bulk	surface	bulk	surface	Bulk
1	1.77	1.82	1.82	1.89	1.77	1.83
2	1.81	1.90	1.80	1.82	1.82	1.88
3					1.84	1.90
4					1.79	1.83

The Ga₂O₃(111) structure bears a more complicated coordination change for the surface atoms compared with those in the bulk. All four exposed Ga rise up along the surface normal vector (Fig. 2(c)). The movement of these Ga pushes O1 atom to the center of Ga1-Ga2-Ga4 triangle and reduces the Ga1-O1 distance from 3.515 Å to 2.192 Å, which produces a bond compensation for the tetrahedral Ga1 while maintaining the coordination environment of Ga2 and Ga4.

The Bader charge analyses (Table 2) unsurprisingly showed that for all three slabs the Ga atoms on the surfaces are less positive than their counterparts in the bulk, indicating slight reduction of surfaces. Moreover, the charge of sixfold coordinated Ga2 on $Ga_2O_3(001)$ -A changed the most significantly which may be due to the stretching of its surrounding bonds.

Adsorptions and surface reactions

Adsorptions of hydrogen and CO_2 on $Ga_2O_3(001)$ -A, (001)-B, and (111) surfaces

According to our calculations, H_2 molecule adsorbs rather weakly on these Ga_2O_3 surfaces. The calculated H_2 adsorption energies at $Ga_2O_3(001)$ -A, (001)-B, and (111) are 0.04 eV, 0.05 eV, and 0.04 eV, respectively, and the distances between H_2 and surface O atoms are all longer than 2.4 Å (calculated structures are presented in Fig. S2). For H atom, the most stable adsorption sites are always the unsaturated O1 of the surfaces and the adsorption processes are all exothermic. The corresponding adsorption energies (with respect to half H_2) are 0.75 eV at Ga₂O₃(001)-A, 0.26 eV at (001)-B, and 0.63 eV at (111) surface. The Ga₂O₃(001)-A gives the highest adsorption energy which could favor hydrogen spillover from supported metal. We also tested various Ga sites for H atom adsorption. However, all those processes are endothermic or the H atom moves to O sites beside the Ga after optimization.

For CO₂ adsorption, our calculation showed that Ga₂O₃(111) gives the strongest adsorption. The adsorption energy is 0.94 eV on it, while it is 0.92 eV on Ga₂O₃(001)-A and only 0.17 eV on $Ga_2O_3(001)$ -B. In Fig. 4, we present the calculated structures of CO₂ adsorption at these surfaces. The blue balls denote the O atoms in CO₂. As one may expect from the adsorption structures, the bending of the CO₂ forms a carbonate-like species accompanied by electron transfer to the molecule, which may give rise to its strong interaction with the surface. The bended CO₂ on both $Ga_2O_3(001)$ -A and $Ga_2O_3(111)$ sits at the least positive Ga atom of each surface. The Bader charge analyses showed that all the adsorbed CO_2 are negative, and calculated charges are -0.19 |e| and -0.20 |e| at Ga₂O₃(001)-A and (111), respectively. While for the weakly adsorbed linear CO2 on Ga2O3(001)-B, the calculated charge is only -0.01 |e|, which suggests the nature of a neutral molecule. The charges transferred from the surfaces could therefore activate the CO₂ and lead to further reactions.

Coadsorption of H atom and CO_2 molecule on $Ga_2O_3(001)$ -A, (001)-B, and (111) surfaces

Based on the most stable adsorption structures of CO_2 on the three Ga_2O_3 surfaces, we tried various coadsorption configurations of H atom and CO_2 molecule. Since the adsorption of H_2 is generally very weak, H atoms involved in the

Fig. 4 Top and side views of the most stable CO₂ adsorption structures on Ga₂O₃ (a) (001)-A, (b) (001)-B, and (c) (111). O of CO₂ are in blue

Fig. 5 Top and side views of the most stable CO₂+H coadsorption structures at Ga₂O₃ (a) (001)-A and (b) (001)-B

hydrogenation processes are very likely to spill from supported metal clusters [20]. These coadsorption structures could then be the initial states of further hydrogenation reactions. The most favorable coadsorption structures at $Ga_2O_3(001)$ -A and (001)-B are presented in Fig. 5. At $Ga_2O_3(001)$ -A, the coadsorption energy is 1.74 eV and the distance between the adsorbed H and the nearest O atom of neighboring CO₂ is 1.783 Å. This carbonate-like adsorbed CO₂ molecule tilts down to the H and the coadsorption forms a very stable structure on the surface. It is energetically 0.67 eV more stable than the COOH intermediate (SI, Fig. S3(b)), and the barrier for the H to transfer to form such COOH is as high as ~2.5 eV. Thus the H atom could hardly move to CO_2 to undergo further reactions and this strongly adsorbed co-adsorption intermediate tends to be eventually stuck in this structure. However, there are actually five O sites around the adsorbed CO_2 (Fig. 5(a)), among which the O2 and O2' (type II) and the O1 (type I) may also be the sites for H adsorption and the distances between such H and O in CO_2 are within 3 Å. We then expected another co-adsorption structure presented in

Fig. 6 Top and side views of coadsorption structures as initial states for the following reactions at Ga_2O_3 (a) (001)-A and (b) (111)

Fig. 7 Calculated relative energies of the intermediates adsorbed at Ga₂O₃ (001)-A and (111)

Fig. 6(a) to be the initial state for the hydrogenation reaction at $Ga_2O_3(001)$ -A. In this second most stable co-adsorption configuration at $Ga_2O_3(001)$ -A, the H sits on the saturated O2 next to the CO₂. The corresponding co-adsorption energy was calculated to be 0.50 eV and the distance between H and the nearest O of CO₂ is 2.750 Å. On the other hand, the CO₂ coadsorbs with H atom weakly on $Ga_2O_3(001)$ -B (Fig. 5(b)). The adsorption energy is 0.56 eV, and the distance between H and the lower O in CO₂ is 3.042 Å while the H-C distance is 3.177 Å. Also, the CO₂ molecule still keeps a linear configuration and the H atom is actually embed in between two O atoms, which makes it even harder to approach the CO₂. Then, from the calculated co-adsorption structures of H and CO₂, one can expect that the Ga₂O₃(001)-A could play a more crucial role than (001)-B in CO₂ hydrogenation to CH₃OH.

It needs to be noted that at $Ga_2O_3(111)$, the most favorable H adsorption site O1 is blocked by preadsorbed CO_2 . Among the O sites around the adsorbed CO_2 , only two of them can hold the H with the distance between H and O in CO_2 less than 3 Å, which are O2 (type I) and O3 (type III). The most favorable coadsorbed H atom sits on surface O2 (Fig. 6(b)), which gives independent H adsorption energy of 0.49 eV. Correspondingly, the calculated coadsoprtion energy is 1.42 eV, which does not show any promotion effect with respect to the separate adsorptions, and the distance between H and the nearest O of CO_2 is 2.703 Å. This coadsorption is quite similar to that at $Ga_2O_3(001)$ -A (Fig. 6(a)) and we took it as the initial state for the CO_2 hydrogenation at $Ga_2O_3(111)$.

Hydrogenation of CO₂ on Ga₂O₃(001)-A and (111) surfaces

As the active $\{001\}$ facet and the initial states are confirmed, we then compared the reactions at $Ga_2O_3(001)$ -A and $Ga_2O_3(111)$. To investigate this process, we added hydrogen

Fig. 8 Calculated structures of HCO intermediate at Ga₂O₃ (a) (001)-A; (b) (111)

atoms to the adsorbed CO_2 one by one and remove water molecule if needed to construct a series of reaction intermediates leading to methanol. The diagram of calculated relative energies is plotted in Fig. 7 and the intermediates structures can be found in SI (Fig. S3-S11). All the energy values listed in Fig. 7 are estimated relative to adsorbed CO_2 on each surface and gas-phase H₂ and H₂O molecules.

One can see from the diagram that the product methanol (Fig. S11) and most of the intermediates in each step have

similar relative energies with differences below 0.20 eV. From the thermodynamic point of view, we could identify the lowest-energy reaction route below the zero energy base line along COOH_b (Fig. S3(b), (e)), HCOOH (Fig. S4), HCO (Fig. 8), H₂CO (Fig. S8), H₂COH (Fig. S10), and finally the methanol on these two surfaces. In particular, calculated energies of HCOO intermediates on the two surfaces (Figs. S3(c) and (f)) are approximately 2 eV higher than COOH on the corresponding surfaces, indicating that the latter should be

more likely to form in the first step of hydrogenation. The activation of CO_2 to such bicarbonate species is therefore a key step during the whole process for methanol formation. It should also be mentioned that the HCO species (Fig. 8) formed as the result of bicarbonate reduction actually gives a formate structure, which could be further hydrogenated to methanol as reported by Collins et al. [20, 22].

The detailed process of H transfer for COOH formation was then calculated. From the initial co-adsorption state (IS), the H could first move to the nearby O of the CO_2 (intermediate, IM) and then diffuse to the upper O, which gives the most favorable final state (FS) as a bicarbonate-like species. These processes are presented in Fig. 9. The related H-O distances are also presented in red.

From the calculated energy profile we can find that the first step of hydrogen transfer is endothermic on both these surfaces. The intermediate state on $Ga_2O_3(001)$ -A is 0.08 eV higher than the initial state after climbing over a barrier of 0.91 eV. By contrast, at $Ga_2O_3(111)$, the intermediate state is 0.89 eV less stable than the initial one and the barrier is 1.21 eV, both of which are higher than the corresponding ones at (001)-A. The diffusion of H within the CO₂ molecule is the second step, which needs to overcome a barrier of 0.99 eV at (001)-A and 0.96 eV at (111). One can see that this innermolecular H diffusion process is quite similar at the two surfaces as it is obviously very weakly affected by oxide surfaces. The occurrence of the final state is exothermic with respect to the initial state on (001)-A, but it is still endothermic for (111).

The above calculations regarding the first H transfer processes showed that CO₂ hydrogenation is much more favorable to occur at $Ga_2O_3(001)$ -A compared to $Ga_2O_3(111)$. As we have mentioned, among the O sites surrounding the adsorbed CO₂, saturated O2 and O2' of type II and unsaturated O1 of type I at Ga₂O₃(001)-A could act as the H adsorption sites and give the distances between H and O in CO₂ below 3 Å. Similarly, unsaturated O2 of type I and unsaturated O3 of type III are where the H can co-adsorb at $Ga_2O_3(111)$ with adsorbed CO₂. The advantages of Ga₂O₃(001)-A is mainly due to the fact that the saturated O2 (type II) in a distorted planer triangle coordination environment is energetically more suitable than the two unsaturated O at Ga₂O₃(111) which hold the H too strongly in promoting the hydrogenation transfer. It might also benefit the subsequent steps and finally lead to the higher conversion rate of CO₂ on (001)-A dominated plate like Ga_2O_3 .

Conclusions

hydrogenation to methanol in this work. Our results identified the β -Ga₂O₃(001)-A termination as the active one for Ga₂O₃(001) and showed a face dependence of the catalytic performance of Ga₂O₃ based materials. In particular, the similar bending adsorption structures of CO₂ at Ga₂O₃(001)-A and (111) indicate a charge transfer from surface to molecule and its activation at these two surfaces, while Ga₂O₃(001)-B is much less active for CO₂ adsorption and activation. Moreover, the saturated surface O in a distorted planer triangle coordination environment at Ga₂O₃(001)-A can benefit hydrogen transfer to CO₂, which is the first and key step in the whole process for methanol formation.

Acknowledgments This work was supported by the National Basic Research Program (2011CB808505), National Natural Science Foundation of China (21322307, 21421004), Open Project of State Key Laboratory of Chemical Engineering (SKL-ChE-12C02), and "Shu Guang" project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation (13SG30). The authors are thankful for the computing time in the National Super Computing Center in Jinan. J.Q. also thanks China Scholarship Committee (CSC) for the visiting studentship at Oxford University.

References

- 1. Tippins HH (1965) Phys Rev 140:A316–A319
- 2. Kim HG, Kim WT (1987) J Appl Phys 62:2000-2002
- Ueda N, Hosono H, Waseda R, Kawazoe H (1997) Appl Phys Lett 71:933–935
- 4. Yusa H, Tsuchiya T, Sata N, Ohishi Y (2008) Phys Rev B 77:064107
- Kokubun Y, Miura K, Endo F, Nakagomi S (2007) Appl Phys Lett 90:031912
- Basharat S, Carmalt CJ, Binions R, Palgrave R, Parkin IP (2008) Dalton Trans 5:591–595
- Mazeina L, Perkins FK, Bermudez VM, Arnold SP, Prokes SM (2010) Langmuir 26:13722–13726
- 8. Remeika JP (1960) J Appl Phys 31:S263-S264
- 9. Hayashi H, Huang R, Ikeno H, Oba F, Yoshioka S, Tanaka I, Sonoda S (2006) Appl Phys Lett 89:181903
- Yoshioka S, Hayashi H, Kuwabara A, Oba F, Matsunaga K, Tanaka I (2007) J Phys Condens Matter 19:346211
- 11. Bermudez VM (2006) Chem Phys 323:193-203
- 12. Yamaguchi K (2004) Solid State Commun 131:739–744
- Rahane AB, Deshpande MD, Chakraborty S (2012) J Phys Chem A 116:10559–10565
- 14. Fujitani T, Nakamura I (2002) Bull Chem Soc Jpn 75:1393-1398
- Fujitani T, Saito M, Kanai Y, Watanabe T, Nakamura J, Uchijima T (1995) Appl Catal A Gen 125:L199–L202
- Yang Y, Evans J, Rodriguez JA, White MG, Liu P (2010) PCCP 12: 9909–9917
- 17. Grabow LC, Mavrikakis M (2011) ACS Catal 1:365-384
- Zhao Y-F, Yang Y, Mims C, Peden CHF, Li J, Mei D (2011) J Catal 281:199–211
- Weigel J, Koeppel RA, Baiker A, Wokaun A (1996) Langmuir 12: 5319–5329
- 20. Collins SE, Baltanás MA, Bonivardi AL (2004) J Catal 226:410-421
- Collins SE, Chiavassa DL, Bonivardi AL, Baltanás MA (2005) Catal Lett 103:83–88
- Collins SE, Delgado JJ, Mira C, Calvino JJ, Bernal S, Chiavassa DL, Baltanás MA, Bonivardi AL (2012) J Catal 292:90–98

- 23. Pan Y-x, Kuai P, Liu Y, Ge Q, Liu C-j (2010) Energy Environ Sci 3: 1322–1325
- 24. Zhao B, Pan Y-x, Liu C-j (2012) Catal Today 194:60-64
- Chiavassa DL, Collins SE, Bonivardi AL, Baltanás MA (2009) Chem Eng J 150:204–212
- 26. Reimers WG, Baltanás MA, Branda MM (2013) Appl Surf Sci 274:1-6
- 27. Pan Y-x, Liu C-j, Mei D, Ge Q (2010) Langmuir 26:5551-5558
- 28. Yang Y, Zhang P (2010) Phys Lett A 374:4169-4173
- 29. Pan Y-x, Mei D, Liu C-j, Ge Q (2011) J Phys Chem C 115:10140– 10146
- Kohl D, Ochs T, Geyer W, Fleischer M, Meixner H (1999) Sensors Actuators B Chem 59:140–145
- Gonzalez EA, Jasen PV, Juan A, Collins SE, Baltanás MA, Bonivardi AL (2005) Surf Sci 575:171–180
- Calatayud M, Collins SE, Baltanas MA, Bonivardi AL (2009) PCCP 11:1397–1405
- Branda MM, Collins SE, Castellani NJ, Baltanás MA, Bonivardi AL (2006) J Phys Chem B 110:11847–11853
- 34. Bermudez VM (2008) Langmuir 24:12943-12952
- Tsai M-Y, Bierwagen O, White ME, Speck JS (2010) J Vac Sci Technol A 28:354–359
- Oshima T, Arai N, Suzuki N, Ohira S, Fujita S (2008) Thin Solid Films 516:5768–5771
- Chun HJ, Choi YS, Bae SY, Seo HW, Hong SJ, Park J, Yang H (2003) J Phys Chem B 107:9042–9046
- 38. Zhan J, Bando Y, Hu J, Xu F, Golberg D (2005) Small 1:883-888
- Dai L, You LP, Duan XF, Lian WC, Qin GG (2004) J Cryst Growth 267:538–542
- Hu JQ, Li Q, Zhan JH, Jiao Y, Liu ZW, Ringer SP, Bando Y, Golberg D (2008) ACS Nano 2:107–112
- 41. Zhu F, Yang ZX, Zhou WM, Zhang YF (2006) Solid State Commun 137:177–181
- 42. Sharma S, Sunkara MK (2002) J Am Chem Soc 124:12288-12293

- 43. Chang KW, Wu JJ (2004) Adv Mater 16:545-549
- 44. Zhang J, Liu ZG, Lin CK, Lin J (2005) J Cryst Growth 280:99-106
- 45. Sun XM, Li YD (2004) Angew Chem Int Ed 43:3827-3831
- Zhou X, Qu J, Xu F, Hu J, Foord JS, Zeng Z, Hong X, Edman Tsang SC (2013) Chem Commun 49:1747–1749
- 47. Kresse G, Hafner J (1993) Phys Rev B 47:558-561
- 48. Kresse G, Hafner J (1994) Phys Rev B 49:14251-14269
- 49. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15-50
- 50. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169-11186
- 51. Blöchl PE (1994) Phys Rev B 50:17953–17979
- 52. Kresse G, Joubert D (1999) Phys Rev B 59:1758-1775
- Ferdew JP, Burke K, Emzerhof M (1996) Phys Rev Lett 77:3865– 3868
- 54. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396
- 55. Bader RFW (1990) Atoms in molecules—a quantum theory. Clarendon, Oxford
- 56. Tang W, Sanville E, Henkelman G (2009) J Phys Condens Matter 21: 084204
- 57. Sanville E, Kenny SD, Smith R, Henkelman G (2007) J Comput Chem 28:899–908
- Henkelman G, Arnaldsson A, Jonsson H (2006) Comput Mater Sci 36:354–360
- Jonsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. World Scientific, Singapore
- 60. Henkelman G, Jónsson H (2000) J Chem Phys 113:9978-9985
- 61. Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113: 9901–9904
- 62. Sheppard D, Terrell R, Henkelman G (2008) J Chem Phys 128: 134106
- 63. Sheppard D, Henkelman G (2011) J Comput Chem 32:1769-1771
- Sheppard D, Xiao P, Chemelewski W, Johnson DD, Henkelman G (2012) J Chem Phys 136:074103